Haplotype Inference on Pedigrees with Recombinations and Mutations
نویسندگان
چکیده
Haplotype Inference (HI) is a computational challenge of crucial importance in a range of genetic studies, such as functional genomics, pharmacogenetics and population genetics. Pedigrees have been shown a valuable data that allows us to infer haplotypes from genotypes more accurately than population data, since Mendelian inheritance restricts the set of possible solutions. In order to overcome the limitations of classic statistical haplotyping methods, a combinatorial formulation of the HI problem on pedigrees has been proposed in the literature, called Minimum-Recombinant Haplotype Configuration (MRHC) problem, that allows a single type of genetic variation events, namely recombinations. In this work, we define a new problem, calledMinimum-Change Haplotype Configuration (MCHC), that extends the MRHC formulation by allowing also a second type of natural variation events: mutations. We propose an efficient and accurate heuristic algorithm for MCHC based on an L-reduction to a well-known coding problem. Our heuristic can also be used to solve the originalMRHC problem and it can take advantage of additional knowledge about the input genotypes, such as the presence of recombination hotspots and different rates of recombinations and mutations. Finally, we present an extensive experimental evaluation and comparison of our heuristic algorithm with several other state-of-the-art methods for HI on pedigrees under several simulated
منابع مشابه
Linear-Time Haplotype Inference on Pedigrees Without Recombinations
In this paper, a linear-time algorithm, which is optimal, is presented to solve the haplotype inference problem for pedigree data when there are no recombinations and the pedigree has no mating loops. The approach is based on the use of graphs to capture SNP, Mendelian and parity constraints of the given pedigree.
متن کاملHaplotype Inference on Pedigrees with Recombinations, Errors, and Missing Genotypes via SAT solvers
The Minimum-Recombinant Haplotype Configuration problem (MRHC) has been highly successful in providing a sound combinatorial formulation for the important problem of genotype phasing on pedigrees. Despite several algorithmic advances and refinements that led to some efficient algorithms, its applicability to real datasets has been limited by the absence of some important characteristics of thes...
متن کاملHaplotype Inference for Pedigrees with Few Recombinations
Pedigrees, or family trees, are graphs of family relationships that are used to study inheritance. A fundamental problem in computational biology is to find, for a pedigree with n individuals genotyped at every site, a set of Mendelian-consistent haplotypes that have the minimum number of recombinations. This is an NP-hard problem and some pedigrees can have thousands of individuals and hundred...
متن کاملk-Recombination Haplotype Inference in Pedigrees
Haplotyping under the Mendelian law of inheritance on pedigree genotype data is studied. Because genetic recombinations are rare, research has focused on Minimum Recombination Haplotype Inference (MRHI), i.e. finding the haplotype configuration consistent with the genotype data having the minimum number of recombinations. We focus here on the more realistic k-MRHI, which has the additional cons...
متن کاملMinimum Parent-Offspring Recombination Haplotype Inference in Pedigrees
The problem of haplotype inference under the Mendelian law of inheritance on pedigree genotype data is studied. The minimum recombination principle states that genetic recombinations are rare and haplotypes with fewer recombinations are more likely to exist. Given genotype data on a pedigree, the problem of Minimum Recombination Haplotype Inference (MRHI) is to find a set of haplotype configura...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010